MAPPING OF A DNA-BINDING DOMAIN OF SIMIAN VIRUS 40 T-ANTIGEN USING NON-DEFECTIVE ADENOVIRUS 2—SIMIAN VIRUS 40 HYBRID VIRUSES

Mathias MONTENARH, Wolfgang DEPPERT and Roland HENNING Department of Biochemistry, University of Ulm, PO Box 4066, 7900 Ulm, FRG

Received 26 March 1982

1. Introduction

The Simian virus 40 (SV40) large tumor antigen (T-Ag), a multifunctional phosphoprotein of \sim 92 000 M_r (review [1]) binds specifically to the origin of replication of SV40 DNA [2-5] and non-specifically to other types of DNA [6-9]. Several lines of evidence suggest that SV40 T-Ag is composed of functionally distinct domains. Many of these observations were obtained using adenovirus type 2 (Ad2)-Simian virus 40 hybrid viruses which code for a variety of T-Ag related proteins of different lengths (review [1]). In attempting to localize a non-specific DNAbinding region in the polypeptide chain of T-Ag, we compared the calf thymus DNA-binding properties of SV40 T-Ag from SV40-transformed human cells and T-Ag related polypeptides coded for by Ad2*ND2 and Ad2*ND4. These proteins share the C-terminal end of large T-Ag and range from 42 000 M_r to that of intact T-Ag (92 000 $M_{\rm r}$). These experiments and several other observations suggest a DNA-binding domain inside the polypeptide chain of T-Ag located between maximally 0.53 and 0.39 SV40 DNA map units.

2. Materials and methods

2.1. Infection, radiolabeling and extraction of cells
Ad2*ND2 and Ad2*ND4 stocks, originally obtained from A. M. Lewis jr (National Institutes of Health,
Bethesda MD) were prepared as in [10] (titer of both virus stocks: 5 × 10⁸ plaque forming units [p.f.u.]/ml).
HeLa S₃ cells grown in minimal essential medium
(MEM) were infected at a multiplicity of 100 PFU/cell. Late in infection (24 h p.i.) 4 × 10⁶ cells were labeled with 30 μCi [³⁵S]methionine (Amersham) in

1 ml methionine-free DMEM for 2 h. SV40-transformed human cells (SV80) (4 \times 10⁶) were labeled with 30 μ Ci [3⁵S]methionine for 2 h. After labeling, 4 \times 10⁶ cells were harvested, and lysed for 30 min on ice with 0.4 ml extraction buffer (0.5% non-ionic detergent NP40, 10 mM Tris—HCl, 0.1 M NaCl, pH 9.0) as in [11]. Homogenates were centrifuged at 105 000 \times g for 30 min and the supernatants were used as extracts for DNA-binding experiments.

2.2. Analysis of DNA-binding properties of SV40 T-Ag and related proteins

DNA-binding experiments were performed as in [11]. Briefly, 0.4 ml cell extracts (pH 9.0) were incubated either directly with 30 mg calf thymus DNAcellulose (PL Biochemicals) or after careful pH-adjustment with 0.1 M acetic acid to pH 6.0 or pH 7.3 shortly before incubation (30 min, 4°C). After washing with the corresponding buffer, the DNA-cellulose was eluted twice with 0.4 ml elution buffer (10 mM Tris-HCl (pH 9.0), 0.8 M NaCl, 0.5% NP40). The combined eluates and supernatants were analyzed for DNA-bound and -unbound SV40-specific proteins, respectively, by immunoprecipitation with 10 µl rabbit anti-SDS-T serum [12] and 150 µl preswollen protein A-Sepharose (Pharmacia) (60 min, 0°C), Protein A-Sepharose beads were washed extensively with 10 mM Tris-HCl (pH 7.2), 0.5% NP40, and eluted (200 μ l 50 mM NH₄HCO₃, 1% SDS, 1% 2-mercaptoethanol, 30 min on ice). After lyophilization, immune complexes were dissolved (5 min, 100°C) in 20 µl sample buffer (65 mM Tris-HCl (pH 6.8), 5% 2-mercaptoethanol, 10% glycerol, 0.001% bromophenol blue) and analyzed by SDS-polyacrylamide gel electrophoresis. Labeled proteins were detected by fluorography [13].

3. Results and discussion

3.1. DNA-binding of SV40-specific proteins encoded by the hybrid viruses Ad2⁺ND4 and Ad2⁺ND2

In a first attempt to map a DNA-binding region on the polypeptide chain of SV40 large T-Ag, we analyzed Ad2*ND4 encoded SV40-specific proteins. [35 S]-Methionine-labeled extracts of Ad2*ND4 infected HeLa cells were incubated at pH 6.0, 7.3 or 9.0 with calf thymus DNA-cellulose. DNA-unbound (u) and -bound (b) SV40-specific proteins were immunoprecipitated from the DNA-cellulose supernatants and eluates, respectively, with rabbit anti-SDS-T serum and analyzed by SDS-polyacrylamide gel electrophoresis (fig.1A). The control immunoprecipitate from the total cell extract showed almost all the SV40-specific Ad2*ND4 proteins: $56\,000\,M_{T}$ protein, $60\,000\,$ and $70\,000\,$ m protein families, and the $92\,000\,$ m protein. SV40-specific proteins larger than

the 56 000 $M_{\rm r}$ protein showed a DNA-binding activity increasingly similar to that of SV40 T-Ag, i.e., at pH 6.0 the 60 000 $M_{\rm r}$ and 70 000 $M_{\rm r}$ family proteins and the 92 000 $M_{\rm r}$ protein were found predominantly bound to DNA—cellulose, whereas the 56 000 $M_{\rm r}$ protein reproducibly had a weaker DNA-binding activity. At pH 7.3, only the 92 000 $M_{\rm r}$ protein showed some binding activity. In this experiment, the SV40-encoded 42 000 $M_{\rm r}$ protein was barely detectable, but after longer exposure it was found only in the unbound fraction at all pH-values tested.

To define more precisely the DNA-binding properties of the 56 000 and the 42 000 $M_{\rm r}$ proteins, we repeated this type of experiment under identical conditions using radiolabeled extracts of HeLa cells infected with Ad2⁺ND2 which codes for only two T-Ag related fragments, the 56 000 $M_{\rm r}$ (0.44–0.17 SV40 DNA map units, MU) and 42 000 $M_{\rm r}$ (0.39–0.17 SV40 DNA MU) proteins [14]. At all pH-values the

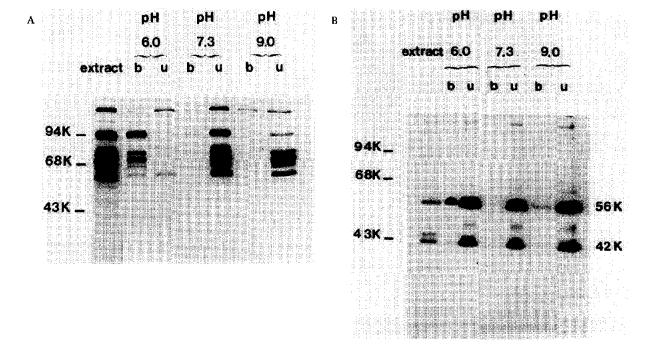


Fig.1. Analysis of DNA-binding properties of SV40 T-Ag related proteins encoded by Ad2*ND4 and Ad2*ND2. HeLa S_3 monolayer cells were infected with Ad2*ND4 or Ad2*ND2 and labeled for 2 h with 30 μ Ci [35S]methionine/4 × 106 cells. Aliquots of cell extracts corresponding to 4 × 106 cells were incubated with 30 mg calf thymus DNA-cellulose at pH 6.0, 7.3 and 9.0. Unbound (u) and bound (b) SV40 T-Ag related proteins were immunoprecipitated from DNA-cellulose supernatants and eluates, respectively, and analyzed on 12.5% (A) or 10% (B) SDS—polyacrylamide slab gels. The fluorograms of the gels are shown. The left panels of (A) and (B) show the proteins immunoprecipitated from aliquots of the original extracts. ¹⁴C-Radiolabeled M_T markers (Amersham) are indicated on the left of the figure: phosphorylase a (94 000 M_T), bovine serum albumin (68 000 M_T) and ovalbumin (43 000 M_T). (A) Ad2*ND4 (56 000, 60 000 and 70 000 M_T families, 92 000 M_T protein, 100 000 M_T adenovirus protein); (B) Ad2*ND2 hybrid virus-encoded proteins are indicated on the right of picture (56 000 and 42 000 M_T).

42 000 $M_{\rm r}$ protein remained unbound in the DNA—cellulose supernatant while the 56 000 $M_{\rm r}$ protein showed again some binding activity at pH 6.0 (fig.1B). The differences between the binding properties of the 42 000 and the 56 000 $M_{\rm r}$ fragments confirm the results obtained with Ad2⁺ND4 and suggest that the C-terminal end of a DNA-binding region might be located inside the polypeptide chain of T-Ag corresponding to 0.39 MU (fig.3).

3.2. Binding of Ad2⁺ND2 hybrid virus encoded proteins to DNA in the presence of SV40 large T- and small t-antigen

To compare the DNA-binding activities of SV40 large T-Ag and little t-antigen directly with those of both the 56 000 and 42 000 $M_{\rm r}$ proteins, we mixed extracts from [35 S]methionine labeled SV40-transformed cells (SV80) and Ad2[†]ND2-infected HeLa cells at a 1:1 ratio and incubated these mixtures with DNA-cellulose as described above. Fig.2 demonstrates that the binding behavior of intact SV40 T-Ag was

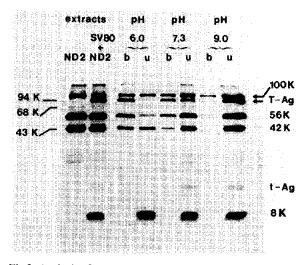


Fig. 2. Analysis of DNA-binding properties of SV40 T-Ag related proteins (56 000 and 42 000 M_T) encoded by Ad2⁺ND2 in the presence of SV40 T-Ag expressed in SV40-transformed SV80 cells. [35 S]Methionine-labeled cell extracts from HeLa S₃ cells infected with Ad2⁺ND2 and from SV80 cells were mixed at a ratio of 1:1. DNA-binding experiments using aliquots of the mixed cell extracts corresponding to 4×10^6 cells and gel electrophoresis were performed as described for fig.1. The ¹⁴C-radiolabeled M_T markers are indicated on the left of the picture. The following virus-encoded proteins are indicated on the right of the picture: T-Ag, t-Ag, 8000 M_T (SV40-encoded proteins in SV80 cells); 56 000, 42 000 M_T (Ad2⁺ND2 encoded T-Ag related proteins); 100 000 M_T (Ad2⁺ND2 encoded adenovirus 100 000 M_T protein).

similar to that in [11], i.e., it bound efficiently to DNA-cellulose at pH 6.0 and more weakly at pH 7.3, while at pH 9.0 most of it remained unbound in the supernatant after DNA-cellulose incubation. At pH 6.0 the 56 000 $M_{\rm r}$ protein showed a stronger DNA binding behavior than that observed in the absence of T-Ag in fig.1B. Even the 42 000 $M_{\rm r}$ protein showed some weak binding activity at pH 6.0 in the presence of T-Ag from SV80 cells. This control experiment supports the results obtained from fig.1A,B. Additionally, the mixing experiment suggests that possibly due to aggregation properties, intact T-Ag may influence the binding properties of the 56 000 and 42 000 $M_{\rm r}$ proteins.

SV40 small t-antigen has an N-terminal region of 82 amino acids (0.65–0.59 MU) in common with large T-Ag [15]. As expected, small t-antigen observed in all lanes containing SV40 large T-Ag occurred only in unbound fractions. The low- $M_{\rm r}$ t-antigen (8000 $M_{\rm r}$) in [16] corresponds to the common N-terminal region of both small and large T-Ag, and it did not bind to DNA-cellulose (fig.2). These observations confirm the results in [8,16].

These results and those from other laboratories using:

- Known T-Ag peptide fragments [8,17] and SV40specific proteins encoded by defective adeno-SV40 hybrid viruses [18];
- (ii) Temperature-sensitive (tsA) or SV40 deletion mutants (review [1]) and applying;
- (iii) Microinjection of early SV40 DNA fragments [19] support the idea that some of the multifunctional properties of T-Ag are explainable by a correlation between certain polypeptide regions and distinct functions.

Fig.3 shows the DNA-binding domain mapped inside the polypeptide chain of T-Ag between, maximally, 0.53-0.39 SV40 DNA MU. These results propose that according to the SV40 DNA mapping data of

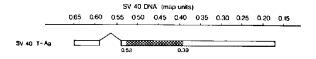


Fig.3. Mapping of the DNA-binding region of SV40 T-Ag according to SV40 DNA map units. The physical map of the early region of the SV40 DNA is shown in the top line [1]. The interruption indicates the position of the 0.59/0.54 intron. The hatched section shows the DNA-binding domain.

Ad2 ND2 and Ad2 ND4 [14] the right-end of a domain necessary for the non-specific DNA-binding properties of T-Ag can be mapped between 0.42-0.39 SV40 DNA map units. Additionally, our results agree with observations which allow one to restrict the leftend of the domain at ~ 0.53 MU: an 84 000 M_r protein, which has the N-terminal part in common with full length T-Ag, but misses a C-terminal region between 0.25-0.17 MU, shows a DNA-binding affinity comparable to full length T-Ag [17]; the 33 000 M_r protein encoded by the SV40 deletion mutant d1 1001 (0.64-0.43 MU) binds to DNA with a high affinity [20]; SV40 small t-antigen (0.64-0.54 SV40 MU) in our hands and in other laboratories [8,16] had no DNA-binding affinity; an 82 000 M_r in vitro translation product of early SV40 mRNA (0.53-0.17 MU) has a normal DNA-binding behavior [8].

The non-specific DNA-binding domain suggested here may be associated with the function of T-Ag to induce host cell DNA synthesis [21]. By using a number of cloned fragments with deletions in various positions of the SV40 DNA, only the region of T-Ag encoded between 0.51–0.42 SV40 DNA MU, i.e., inside the non-specific DNA-binding domain, is absolutely necessary for the induction of cellular DNA synthesis [21].

Acknowledgements

We appreciate the excellent technical assistance of Ms Asta Paule, Mr Peter Hirschkorn and Mrs Manuela Benedikt-Palme and thank Mrs Madge B. Henning for the help with the manuscript. This work was supported by the Deutsche Forschungsgemeinschaft (He 882/4 and De 212/3).

References

- Tooze, J. (1980) Molecular biology of tumor viruses, part 2, DNA tumor viruses, Cold Spring Harbor Laboratory, New York.
- [2] Jessel, D., Landau, T., Hudson, J., Lalor, T., Tenen, D. and Livingston, D. M. (1976) Cell 8, 535-545.
- [3] Reed, S. I., Ferguson, J., Davis, R. W. and Stark, G. R. (1975) Proc. Natl. Acad. Sci. USA 72, 1605-1609.
- [4] Shalloway, D., Kleinberger, T. and Livingston, D. M. (1980) Cell 20, 411-422.
- [5] Tegtmeyer, P., Anderson, B., Shaw, S. B. and Wilson, V. G. (1981) Virology 115, 75-87.
- [6] Carroll, R. B., Hager, L. P. and Dulbecco, R. (1974) Proc. Natl. Acad. Sci. USA 71, 3754-3757.
- [7] Jessel, D., Hudson, I., Landau, T., Tenen, D. and Livingston, D. M. (1975) Proc. Natl. Acad. Sci. USA 72, 1960-1964.
- [8] Prives, C., Beck, Y. and Shure, H. (1980) J. Virol. 33, 689-696.
- [9] Spillman, T., Giacherio, D. and Hager, L. P. (1979) J. Biol. Chem. 254, 3100-3104.
- [10] Deppert, W., Walter, G. and Linke, H. (1977) J. Virol. 21, 1170-1187.
- [11] Montenarh, M. and Henning, R. (1980) FEBS Lett. 114, 107-110.
- [12] Deppert, W. and Pates, R. (1979) J. Virol. 31, 522-536.
- [13] Bonner, W. M. and Laskey, R. A. (1974) Eur. J. Biochem. 46, 83-88.
- [14] Westphal, H., Lai, S. P., Lawrence, C., Hunter, T. and Walter, G. (1979) J. Mol. Biol. 130, 337-351.
- [15] Volckaert, G., Van de Voorde, A. and Fiers, W. (1978) Proc. Natl. Acad. Sci. USA 75, 2160-2164.
- [16] Spangler, G. J., Griffin, J. D., Rubin, H. and Livingston, D. M. (1980) J. Virol. 36, 488-498.
- [17] Stitt, D. T., Carroll, R. B., Melero, A. and Mangel, W. F. (1980) Virology 111, 283–288.
- [18] Tjian, R. (1978) Cell 13, 165-179.
- [19] Mueller, C., Graessmann, A. and Graessmann, M. (1978) Cell 15, 579-585.
- [20] Rundell, K., Collins, J. K., Tegtmeyer, P., Ozer, H., Lai, C. J. and Nathans, D. (1977) J. Virol. 21, 636-646.
- [21] Galanti, N., Jonak, G. J., Soprano, K. J., Floros, J., Kaczmarek, L., Weissman, S., Reddy, V. B., Tilghman, S. M. and Baserga, R. (1981) J. Biol. Chem. 256, 6469-6474.